

Modeling the Aerodynamics of Supersonic Parachutes for Mars Applications

MECH 598/698: Aerodynamics Loyola Marymount University

Clara O'Farrell

Jet Propulsion Laboratory
California Institute of Technology

September 27, 2018

ASPIRE

Overview

- 1. Mars Entry, Descent & Landing and the ASPIRE project
- 2. Parachute terminology & introduction to parachute aerodynamics
- 3. Measuring parachute aerodynamic coefficients
- 4. ASPIRE's supersonic flight tests

Mars Entry, Descent & Landing

Parachutes for Mars EDL

 Parachutes are primarily drag-producing devices and their efficacy is driven by the dynamic pressure

Drag =
$$C_D \frac{1}{2} \rho V^2$$

- Atmospheric density at Mars is <1% that on Earth
- Drives the need for large, supersonic parachutes to land robotic payloads on the surface
- Also makes testing full scale parachutes at Mars-relevant conditions challenging
 - Matching dynamic pressure and Mach number in ground tests is impossible for full-scale parachute
 - Mars-relevant conditions can be achieved through high-altitude supersonic tests
- The Advanced Supersonic Parachute Inflation Research Experiments
 Project (ASPIRE) was established to study the deployment, inflation and
 performance of two candidate parachutes for the Mars2020 project.

The ASPIRE Project

L+6.2 s (1 km)

Wallops Island, VA

L + ~30 min

Parachute modeling on ASPIRE

Models of aerodynamics of the parachute system are necessary to:

- Evaluate vehicle trajectory for targeting, range safety, recovery
- Evaluate loads on the parachute
- Evaluate loads & accelerations imposed by the parachute on payload
- Guide sensor selection & placement
- Examine differences between parachutes tested in slender body wakes (test) and blunt body wakes (at Mars flight)

Terminology

- Canopy: the main drag-producing area of a parachute system:
 - Open vent at the apex
 - Crown: area near the apex
 - Skirt: outward edge of canopy

Terminology

- Canopy: the main drag-producing area of a parachute system:
 - Open vent at the apex
 - Crown: area near the apex
 - Skirt: outward edge of canopy
- Suspension lines: load-bearing members extending from canopy to payload
 - Intersect at a confluence point
 - May connect directly to payload, or through a riser
- Bridles allow multi-point attachment to payload

Terminology (cont.)

- Nominal area or reference area S₀:
 - Total surface area of all of the fabric & gaps in the canopy
- Nominal diameter D₀:
 - $-S_0 = \pi (D_0/2)^2$
- Projected area S_p:
 - Cross-sectional of the inflated canopy
- Projected diameter:
 - $-S_p = \pi (D_p/2)^2$
- Geometric porosity
 - Ratio (in %) of all open areas (eg vent) in the canopy to the nominal area
- Permeability
 - Describes the propensity of the canopy fabric to let air flow through its fibers
- Porosity or total porosity
 - Term used to describe airflow through the fabric and gaps cut into the fabric

Aerodynamics of parachutes

- Axisymmetrical canopy
- Apparent velocity V
- Angle of attack measured about canopy axis of symmetry
- Forces on a parachute:
 - Weight of payload and parachute
 - Drag (parallel to V)
 - Lift (perpendicular to drag)
 - Tangential force along the parachute axis of symmetry
 - Normal force (perpendicular to T)
- Usually express pitching moment M about the confluence point

Aerodynamics of parachutes

$$C_L = \frac{L}{1/2\rho V^2 S_0}$$

$$C_D = \frac{D}{1/2\rho V^2 S_0}$$

$$C_T = \frac{T}{1/2\rho V^2 S_0}$$

$$C_N = \frac{N}{1/2\rho V^2 S_0}$$

$$C_M = \frac{M}{1/2\rho V^2 S_0 D_0}$$

$$L = N\cos\alpha - T\sin\alpha$$

 $L = N \cos \alpha - T \sin \alpha$ $D = N \sin \alpha + T \cos \alpha$

All coefficients are defined wrt the nominal area and diameter

Static stability and C_m

- By convention, a *negative* pitching moment is stabilizing
- For static stability:

$$C_M = 0 \qquad \frac{dC_M}{d\alpha} < 0$$

Use angle of oscillation as measure of stability

Measuring parachute aerodynamic coeff.

- In 2014, the NASA Engineering & Safety Center (NESC) and JPL conducted a wind tunnel test of scaled parachutes
- Objective: to measure the drag and static aerodynamic coefficients of the model parachutes
- Conducted at the Transonic Dynamics Tunnel (TDT), which can be pumped down to test at low densities (~5% Earth sea level)
- Models were 5% scale of the 21.5 m MSL parachute (~5 ft)
- Atmospheric density also affects the effective fabric permeability, so tests were conducted using two canopy fabrics:
 - PIA-C-44378D Type I, White ("low" permeability)
 - PIA-C-7020D Type I, Orange ("standard" permeability)

Test setup – static coefficients

Test setup – static coefficients

DGB Parachute with Orange Fabric (PIA-C-7020D Type I fabric, "standard" permeability)

$$\alpha = 0^{\circ}$$

Data analyses

Forces and Moment	Coefficients	
Tangential Force = T = T ₁ + T ₂	$C_{T} = \frac{T}{q \cdot S_{0}}$	
Normal Force = N = N ₁ + N ₂	$C_{N} = \frac{N}{q \cdot S_{0}}$	
Pitching Moment (+ nose up) = $m_{SLCP} = N_1 L_{Riser} - N_2 (L_{Tot} - L_{riser})$	$C_{m,SLCP} = \frac{m_{SLCP}}{q \cdot S_0 \cdot D_0}$	

Static coefficient results

--- Parachute w/ Orange Fabric (PIA-C-7020D Type I fabric, "standard" permeability)

Parachute w/ White Fabric (PIA-C-44378D Type I fabric, low permeability)

C_m about the suspension lines confluence point

Test setup – drag coefficient & dynamics

Recorded 70 s of video with a high speed (HS) photogrammetry camera (120Hz), and tracked the motion of the parachute using a vent tracking algorithm. The parachute force was simultaneously recorded at 600Hz using a 6-component balance.

Parachute with "standard" permeability fabric

Parachute with "low" permeability fabric

Parachute w/ Orange Fabric (standard permeability) Test Condition 12, M ~ 0.4

— *'////*.

Parachute w/ White Fabric (low permeability) Test Condition 12, M ~ 0.4

Results – drag coefficient

- Simultaneous with parachute motion tracking, measured force exerted by parachute using a six-component balance
- Determined average drag coefficient at several Mach numbers (0.1 to 0.5)

Results – drag coefficient

- Simultaneous with parachute motion tracking, measured force exerted by parachute using a six-component balance
- Determined average drag coefficient at several Mach numbers (0.1 to 0.5)
- Used existing data to extend these results to supersonic Mach numbers
 & develop a drag model for ASPIRE

ASPIRE's supersonic flights

Three successful supersonic flight tests to date:

	Parachute	Load	Test Date
SR01	Build-to-print Mars Science Laboratory parachute	32 klbf	Oct. 4 th , 2017
SR02	Strengthened parachute (same geometry stronger materials)	56 klbf	Mar. 27 th , 2018
SR03	Strengthened parachute (same geometry stronger materials)	67 klbf	Sep. 7 th , 2018

Results: supersonic flights

ASPIRE payload contained several instruments to

Allowed reconstruction of

Conclusions & future work

- ASPIRE projected successfully tested two candidate parachutes for the Mars2020 project at low-density, supersonic conditions
- Required developing models for the aerodynamic performance of the parachute
- Models developed using historical data & results from a 2014 wind tunnel test
- Supersonic flight payloads contained instruments to reconstruct parachute performance
- Ongoing work:
 - Reconstruct static aerodynamic coefficients
 - Inform development of parachute models for future tests and for flight at Mars

Acknowledgements

The ASPIRE team at JPL, Langley Research Center, Wallops Flight Facility & Ames Research Center

jpl.nasa.gov

Backup

Test Architecture

Test Architecture

- Rail-launched Terrier Black Brant
- Spin-stabilized at 4 Hz
- Yo-yo de-spin after 2nd stage burnout
- Mortar-deployed full-scale DGB
- Cold gas ACS active from payload separation to before mortar fire
- Recovery aids:
 - Foam provides buoyancy
 - Nosecone ballast (for additional mass & aerodynamic stability) is jettisoned before splashdown
- Payload mass:
 - Launch: 1268 kg
 - Post-separation: 1157 kg
 - Splashdown: 495 kg

